

Course Syllabus

1	Course title	Solid State Physics					
2	Course number	0302471					
	Credit hours	3					
3	Contact hours (theory, practical)	3					
4	Prerequisites/corequisites	Quantum Mechanics (0332361)					
5	Program title	Physica					
6	Program code	2					
7	Awarding institution	The University of Jordan					
8	School	Science					
9	Department	Physics					
10	Course level	Senior (fourth year)					
11	Year of study and semester(s)	First semester, 2022-2023					
12	Other department(s) involved in teaching the course	None					
13	Main teaching language	English					
14	Delivery method	⊠Face to face learning □Blended □Fully online					
15	Online platforms(s)	□Moodle ⊠Microsoft Teams □Skype □Zoom □Others					
16	Issuing/Revision Date	9/10/2022					

2

17 Course Coordinator:

Name: Sami H. Mahmood

Office number: 17

Contact hours: 11:30 – 13:00 Mon, Wed.

Email: s.mahmood@ju.edu.jo

Phone number: 0796709673

18 Other instructors:

None

19 Course Description:

Crystal lattice and structure; reciprocal lattice; crystal binding; lattice vibrations; elastic scattering of waves; thermal properties of solids; free-electron gas, energy bands in solids.

20 Course aims and outcomes:

A- Aims: The course contents are designed to:

- 1. Provide the students with essential knowledge on the structure of crystalline solids having different structural symmetries.
- 2. Establish an understanding of the relevance of reciprocal space to the structure of solids.
- 3. Establish an understanding of the different types of binding in solids, and provide the students with the knowledge and tools that are necessary to determine the binding energy in solids and molecules.
- 4. Establish an understanding of the lattice vibrational modes and properties of elastic waves in threedimensional solid
- 5. Derive the density of states for elastic waves, and determine the contribution of lattice vibrations to the thermal properties of solids
- 6. Establish an understanding of the electronic distribution in a metal, and derive the electronic density of states based on the free, independent-electron model.
- 7. Establish an understanding of the role of electron dynamics and scattering processes on the thermal and electrical properties of a metal.
- 8. Explain the occurrence of energy bands in solids, within the free and nearly free electron model, and allow students to construct the energy bands for simple crystal structures.

B- Students Learning Outcomes (SLOs):

Upon successful completion of this course, students will be able to:

Program SLOs Course SLOs	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1. Define the lattice, basis, translation vectors, unit cell, crystal structure, and calculate atomic packing in 1-, 2-, and 3- dimensional solids	✓	✓					✓		
2. Identify symmetry operations, and determine the crystal structure, crystal planes and directions, and Miller indices.	~	~					~	✓	
3. Construct the reciprocal lattice and know its relation to diffraction of waves by crystals.	~	~			✓	~	~	~	✓
 Explain Laue Equations, Brillouin zone, and calculate the structure factor for different crystal systems 	✓	~				✓	~	✓	
5. Define bonds in crystals, inert gas crystals, Van der Waals- London interaction, repulsive interaction, and calculate the	✓	√			✓	~	√		

פראראו ורבלרט								
cohesive energy of inert gas crystals.								
6. Define the ionic crystal,								-
Madelung energy, Madelung								
constant, and calculate the	v	v		v	v	v		
lattice energy of ionic crystals.								
7. Define the covalent, metallic,	✓	\checkmark		~		\checkmark		
and hydrogen bonds								_
8. Explain the vibrational modes								
in crystals, and derive the								
dispersion relations of elastic	~	~				~	✓	
waves for monatomic and								
diatomic linear chain.								-
9. Explain the acoustic and optical vibrational modes	✓	✓				\checkmark		
· · · · ·			 					-
10. Define the thermal properties								
of phonons, heat capacity, density of states, and calculate								
the heat capacity of a solid	✓	\checkmark			✓	\checkmark	\checkmark	
using Debye and Einstein								
models.								
11. Discuss the thermal properties								
of solids in light of								
anharmonicity, crystal	✓	✓		\checkmark		\checkmark	\checkmark	
imperfections and phonon								
scattering mechanisms								
12. Explain Fermi electron gas and								
Fermi-Dirac distribution as a	✓	\checkmark		\checkmark		\checkmark		
function of temperature.								
13. Determine the Fermi energy								
and density of states for a free-								
electron system in various	✓	✓				\checkmark	\checkmark	
dimensions, and calculate the							-	
electronic contribution to								
specific heat of solids.								-
14. Define the energy band								
structure in the nearly free								
electron approximation, the	✓	\checkmark		✓		\checkmark	\checkmark	
Bloch theory, and Kronig-								
Penney model.								

21. Topic Outline and Schedule:

Week	Lecture	Торіс	Intended Learning Outcome	Learning Methods (Face to Face/Blended/ Fully Online)	Platform	Synchronous / Asynchrono us Lecturing	Evaluation Methods	Resources
1	1.1	Crystal structure	SLO(1),	Face to face			Test	For all units of this course,
9/10	1.2	Crystal structure	SLO(1),	Face to face			Test	the students may refer to the following
2	2.1	Crystal structure	SLO(2),	Face to face			Test	resources:
16/10	2.2	Crystal Structure	SLO(2),	Face to face			Test	*Text book and suggested
3	3.1	Crystal Structure	SLO(2),	Face to face			Test	references *Power Point
23/10	3.2	Reciprocal Lattice	SLO(3),	Face to face			Test	Presentations & illustrations to be provided
4	4.1	Reciprocal lattice	SLO(3),	Face to face			Test	on e-learning and Microsoft
30/10	4.2	Reciprocal lattice	SLO(3),	Face to face			Test	Teams
5	5.1	Reciprocal Lattice	SLO(4),	Face to face			Test	
6/11	5.2	Reciprocal lattice	SLO(4),	Face to face			Test	
6	6.1	Crystal binding	SLO(5),	Face to face			Test	
13/11	6.2	Crystal binding	SLO(5),	Face to face			Test	
	7.1	Crystal binding	SLO(6),	Face to face			Test	
7 20/11	7.2	Crystal binding	SLO(7),	Face to face			Test	

8.1 28/11/2022, First Exam 8 Phonon Test SLO(8), Face to face 27/11 8.2 modes Phonon SLO(8), Face to face Test 9.1 9 modes Phonon Test 4/12SLO(9), Face to face 9.2 modes Thermal SLO(10), Face to face Test 10.1 10 properties 11/12Thermal SLO(10), Face to face Test 10.2 properties Thermal Test SLO(10), Face to face 11.1 11 properties Thermal Face to face Test 18/12 SLO(11), 11.2 properties 12.1 26/12/2022, Second Exam 12 Free SLO(12), Face to face Test 25/12 12.2 electron gas Free SLO(13), Face to face Test 13.1 13 electron gas 1/1Free SLO(13), Face to face Test 13.2 electron gas SLO(13), Face to face Test Free 14.1 14 electron gas SLO(14), 8/1 Energy Face to face Test 14.2 bands SLO(14), Face to face Test Energy 15 15.1 bands 15/1Tuesday, 17/01/2023 is the last day of teaching. 19/01/2023 - 30/01/2023 is the period of final exams

6

22 Evaluation Methods:

Opportunities to demonstrate achievement of the SLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	SLOs	Period (Week)	Platform
First Exam	structure &		SLO(1) – SLO(4)	Week 8 (28/11/2022)	
Second Exam	25	Crystal binding & Phonon modes	SLO(5) – SLO(9)	Week 12 (26/12/2022)	
Final Exam	Final Exam 50 All course content		SLO(1) – SLO(14)		

23 Course Requirements

Each student should have access to a computer & internet connection

24 Course Policies:

A- Attendance policies:

Attendance is mandatory. Students who record absences more than the legally acceptable limit **may lose their chance to sit for the final exam of the course**.

B- Absences from exams and submitting assignments on time:

False medical reports and other devious ways to avoid taking exams on time are not acceptable. The students are encouraged to handle their responsibility and develop **positive learning attitudes**.

C- Health and safety procedures:

Follow the instructions regarding health and safety procedures in the university.

D- Honesty policy regarding cheating, plagiarism, misbehavior:

The course is designed to provide students with learning opportunities. Group work and discussions accompanied with individual input and hard work are encouraged to fulfill the objectives of the course, whereas **cheating and misbehavior are completely unacceptable**.

E- Grading policy:

Do not waste time arguing about grades and grading policies. Instead, invest your time in fruitful learning.

F- Available university services that support achievement in the course:

- ✓ E-learning resources
- ✓ Microsoft Teams
- ✓ Smart Class rooms
- ✓ Computer facilities

25 References:

A- Required book(s), assigned reading and audio-visuals:

*Textbook: Charles Kittel; Introduction to Solid State Physics, 8th Ed., (John Wiley & Sons, Hoboken, NJ, 2005) Power point presentations and illustrations designed to explain the contents of the course.

B- Recommended books, materials, and media:

[1] J.S. Blakemore, Solid State Physics, 2nd Ed., (Cambridge University Press, Cambridge, 1985)

[2] M.S. Rogalski and S.B. Palmer, Solid State Physics, (Gordon and Breach Science Publishers, Australia, 2000)
[3] J. Richard Christman, Fundamentals of Solid State Physics, John Wiley & Sons, New York, 1988)

26 Additional information:

Name of Course Coordinator: Sami H. Mahmood	Signature	Sm	Date: 9/10/2022
Head of Curriculum Committee/Department:		Signature:	
Head of Department:		- Signatu	re:
Head of Curriculum Committee/Faculty:		Sign	ature:
Dean:	Signature:		
·		0	