

Course Syllabus

1	Course title	Physics for Computer Science Students				
2	Course number	0302108				
3	Credit hours	2 credit hours per week				
5	Contact hours (theory, practical)	theory				
4	Prerequisites/corequisites					
5	Program title	Bachelor in Physics				
6	Program code	02				
7	Awarding institution	The University of Jordan				
8	School	Science				
9	Department	Physics				
10	Course level	First year				
11	Year of study and semester(s)	2022/ first semester				
12	Other department(s) involved in teaching the course	Non				
13	Main teaching language	English				
14	Delivery method	⊠Face to face learning □Blended □Fully online				
15	Online platforms(s)	□Moodle ⊠Microsoft Teams □Skype □Zoom				
	Chime plattor ins(s)	□Others				
16	Issuing/Revision Date	8/10/2022				

مركـز الاعتماد	17 Course Coordinator:
وضمان الجودة	

Name: Ola Hassouneh

Office number:

Email: o.hassouneh@ju.edu.jo

18 Other instructors:

Name:
Office number:
Phone number:
Email:
Contact hours:
Name:
Office number:
Phone number:
Email:
Contact hours:

19 Course Description:

This course is designed for first year computer science students. An introduction to physical quantities and their applications for motion, forces, and fields is offered. Potentials and energy concepts are used to define electrical currents and their interactions with resistors and capacitors. The acquired knowledge is then used to develop the basics of circuit theory (using resistors and capacitors networks). AC- circuits concepts are treated briefly (RC-circuit). The pn-junction will be defined and their use as diodes and transistors with some applications is treated. Characteristics of diodes and transistors will be studied and explained.

Contact hours: 2 hours

Phone number:

20 Course aims and outcomes:

مركز الاعتماد وضمان الجودة

A- Aims:

A- Aims: To give students a proper background on the basic physics behind motion, forces fields and their applications in simple linear circuits and in circuits with diodes and transistors. The lab will give the students a hands-on experience that covers the ideas discussed in class. B- Intended Learning Outcomes (ILOs): Upon successful completion of this course students will be able to ...

1. Tell the difference between scalars and vectors and Use vectors in calculations; vector representation, vector addition and subtraction, and vector components.

Describe one- and two-dimensional motions, using appropriate kinematic equations.
Understand Newton's three Laws of Motion and related applications, with special emphasis on the free-body diagram.

4. Delineate the relationship between work, energy, and power.

5. Understand the basic conservation laws (of energy only) and calculate gravitational potential energy.

6. Solve elementary problems encountered in everyday life.

7. Demonstrate the ability to think critically and to use appropriate concepts to analyze qualitatively problems or situations involving the fundamental principles of physics.

8. Calculate electric force, field and electric potential for different charge configurations system.

9. State and apply the relation between electric force, electric field and electric potential.

10. Understand and apply Coulomb's law, Ohm's law, Kirchhoff's laws and RC-circuits. 11. Calculate the capacitance in parallel and series.

B- Students Learning Outcomes (SLOs):

For purposes of mapping the course SLOs to the physics program SLOs, at the successful

completion of the physics program, graduates are expected to be able to:

SLO (1) Master professionally a broad set of knowledge concerning the fundamentals in the basic areas of physics: Quantum Mechanics, Classical Mechanics, Electrostatics and Magnetism, Thermal Physics, Optics, Theory of Special Relativity, Mathematical Physics, Electronics.

SLO (2) Apply knowledge of mathematics and fundamental concepts in the basic areas of physics to identify and solve physics related problems.

SLO (3) Utilize computers and available software in both data collections and data analysis.

SLO (4) Utilize standard laboratory equipment, modern instrumentation, and classical techniques to design and conduct experiments as well as to analyze and interpret data.

SLO (5) Develop a recognition of the need and ability to engage in life-long learning.

SLO (6) Demonstrate ability to use techniques, skills, and modern scientific tools necessary for professional practice.

SLO (7) Communicate clearly and effectively in both written and oral forms.

SLO (8) Apply proficiently team-work skills and employ team-based learning strategies.

SLO (9) Apply professional and ethical responsibility to society.

Upon successful completion of this course, students will be able to:

Program SLOs	SL								
Course SLOs	Ο	Ο	0	Ο	Ο	Ο	Ο	Ο	0
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1. Tell the difference between scalars and vectors and Use vectors in calculations; vector representation, vector addition and subtraction, and vector components.	v								
2. Describe one- and two- dimensional motions, using appropriate kinematic equations.	*								
3. Understand Newton's three Laws of Motion and related applications, with special emphasis on the free-body diagram.	~								
4. Knowing the relationship between work, energy, and power.	~								
5. Understand the basic conservation laws (of energy only) and calculate gravitational potential energy.	~								

مـركـز الاعـتماد وضمان الجودة

6. Solve elementary problems encountered in everyday life.		~				
7. Demonstrate the ability to think critically and to use appropriate concepts to analyze qualitatively problems or situations involving the fundamental principles of physics.		~		✓		
8. Calculate electric force, field and electric potential for different charge configurations system.	~					
9. State and apply the relation between electric force, electric field and electric potential.	✓					
10. Understand and apply Coulomb's law, Ohm's law, Kirchhoff's laws and RC- circuits.	✓					
11. Calculate the capacitance in parallel and series.	✓					

7

مركز الاعتماد 21. Topic Outline and Schedule: وضمان الجودة

Wee k	Lect ure	Торіс	Intended Learning Outcome	Learning Methods (Face to Face/Blend ed/ Fully Online)	Platf orm	Synchronou s / Asynchrono us Lecturing	Evaluat ion Method s	Resour ces
1	1-2	vectors	1,2,6,7	Face to Face		Synchronou s learning	Writte n exams and Quizzes	Cours e book
2	2-3	1D motion and forces	1,2,6,7	Face to Face		Synchronou s learning	Writte n exams and Quizzes	Cours e book
Wee k	Lect ure	Торіс	Intended Learning Outcome	Learning Methods (Face to Face/Blend ed/ Fully Online)	Platf orm	Synchronou s / Asynchrono us Lecturing	Evaluat ion Method s	Resour ces
4	1-2	Motion in tow Dimension	2,6,7	Face to Face		Synchronou s	Writte n exams and Quizzes	Cours e book
	1-4	Newton's Laws of Motion	3,6,7			Synchronou s		Cours e book

5 and 6				Face to Face		Writte n exams and Quizzes	
7	1-3	Work and Kinetic Energy	4,5,6,7	Face to Face	Syncl	hronou Written exams and Quizzes	Cours e book
8	1-2	Electric Charge and Electric Field	8,6,7	Face to Face	Syncl	hronou Written exams and Quizzes	Cours e book
9	1-2	Gauss Law	8,6,7	Face to Face	Synch s	hronou Writte n exams and Quizzes	Cours e book
10	1-2	Electric Potential	8,6,7	Face to Face	Sync s	hronou Writte n exams and Quizzes	Cours e book
11	1-2		6,7,8,9,11	Face to Face	Sync S	hronou Writte n exams and Quizzes	Cours e book

		Capacitance and Dielectrics					
12	1-2	Current, Resistance, and Electromotiv e Force	6,7,10	Face to Face	Synchronou s	Writte n exams and Quizzes	Cours e book
13	1-2	Direct- Current Circuits	6,7,10	Face to Face	Synchronou s	Written exams and Quizzes	Cours e book

22 Evaluation Methods:

Opportunities to demonstrate achievement of the SLOs are provided through the following assessment methods and requirements:

9

Evaluation Activity	Mark	Topic(s)	SLOs	Period (Week)	Platform
First exam	30%	Ch# 1,2,3	SLO (1) &(2)	Week 5	
Second Exam	20%	Ch#4,5,21,2 2,23	SLO (1) &(2)	Week 8	
Final Exam	50%	All course content	SLO (1) &(2)	Week 15	

23 Course Requirements

students should have a computer, internet connection, webcam, account on a Microsoft Teams

24 Course Policies:

- A- Attendance policies: No more than 15 % of classes can be missed under any circumstances. The students are assumed to be on time for each class and for each lab session and will not be admitted after 10 minutes from the starting time.
- B- Absences from exams and submitting assignments on time: Only allowed if there is a medical approved report from The university of Jordan Hospital. Assignments are only taken if submitted on time
- C- Health and safety procedures: The class room prepared such that they do not pose any hazards to the students or the instructors.
- **D-** Honesty policy regarding cheating, plagiarism, misbehavior: Any act of cheating or plagiarism is not tolerated and the students are clearly required to submit their own work.
- **E-** Grading policy:

The grading for this course is based on: (30% first exam, 20% second exam, 50% final exam)

F- Available university services that support achievement in the course:

a proper library and very well furnished labs.

مركز الاعتماد 25 References: وضمان الجودة

A- Required book(s), assigned reading and audio-visuals:

1. University Physics, Sears and Zemansky, 14th Edition, 2016.

B- Recommended books, materials, and media:

1. Physics for Scientists and Engineers. Jewett and Serway (any edition).

2. Electronic Devices, Thomas Floyd, 9th Edition. (Selected subjects only).

C. E-Learning website: https://elearning.ju.edu.jo/course/view.php?id=17600

26 Additional information:

Name of Course Coordinator: -Ola Hassouneh Signature:
Head of Curriculum Committee/Department: Signature:
Head of Department: Signature:
Head of Curriculum Committee/Faculty: Signature:
Dean: Signature: