Course Syllabus

1	Course title	Classical Mechanics 1
2	Course number	0302351
	Credit hours	$(3,0)$
	Contact hours (theory, practical)	$(48,0)$
4	Prerequisites/corequisites	0302281
5	Program title	Physics
6	Program code	0302
7	Awarding institution	University of Jordan
8	School	Science
9	Department	Physics
10	Course level	Third Year
11	Year of study and semester(s)	Third, First Semester
12	Other department(s) involved in teaching the course	Non
13	Main teaching language	English
14	Delivery method	区 Face to face learning \square Blended \square Fully online
15	Online platforms(s)	$\begin{aligned} & \text { ØMoodle } \square \text { Microsoft Teams } \square \text { Skype } \square \text { Zoom } \\ & \square \text { Others........... } \end{aligned}$
16	Issuing/Revision Date	10/10/2022

Name: Ahmad S Masadeh	Contact hours: Sunday Monday 11-12		
Office number: 12	Phone number: 22065		
Email:	ahmad.masadeh@ ju.edu.jo		

18 Other instructors:

None

19 Course Description:

Newtonian mechanics; oscillations: simple harmonic oscillator, damped oscillations, forced oscillations; gravitation; central force motion; rotating frames.

20 Course aims and outcomes:

A- Aims:
B- Students Learning Outcomes (SLOs):
For purposes of mapping the course SLOs to the physics program SLOs, at the successful completion of the physics program, graduates are expected to be able to:

SLO (1) Master professionally a broad set of knowledge concerning the fundamentals in the basic areas of physics: Classical Mechanics, Electrostatics and Magnetism, Quantum Mechanics, Thermal Physics, Optics, Theory of Special Relativity, Mathematical Physics, Electronics.

SLO (2) Apply knowledge of mathematics and fundamental concepts in the basic areas of physics to identify and solve physics related problems.

SLO (3) Utilize computers and available software in both data collections and data analysis.
SLO (4) Utilize standard laboratory equipment, modern instrumentation, and classical techniques to design and conduct experiments as well as to analyze and interpret data.

SLO (5) Develop a recognition of the need and ability to engage in life-long learning.
SLO (6) Demonstrate ability to use techniques, skills, and modern scientific tools necessary for professional practice.

SLO (7) Communicate clearly and effectively in both written and oral forms.
SLO (8) Apply proficiently team-work skills and employ team-based learning strategies.
SLO (9) Apply professional and ethical responsibility to society.
Upon successful completion of this course, students will be able to:

Course SLOs Program SLOs	SLO (1)	$\begin{gathered} \text { SLO } \\ \text { (2) } \end{gathered}$	SLO (3)	SLO (4)	$\begin{gathered} \text { SLO } \\ (5) \end{gathered}$	$\begin{gathered} \text { SLO } \\ \text { (6) } \end{gathered}$	$\begin{array}{\|c} \hline \text { SLO } \\ (7) \end{array}$	$\begin{array}{\|c} \hline \text { SLO } \\ (8) \end{array}$	$\begin{array}{\|c} \hline \text { SLO } \\ (9) \end{array}$
1. Demonstrate proficiency in mathematical concepts needed for a proper understanding of classical mechanics.	\checkmark		\checkmark				\checkmark		
2. Analyze elementary motion problems involving constant acceleration motion	\checkmark	\checkmark			\checkmark				
3. Understand and apply Newton's laws of motion, and Newton's law of universal gravitation, in common problems									
4. Apply conservation of total mechanical energy and linear momentums principles in common problems									
5. Solve problems dealing with force depends on position and force depends on velocity.									
6. understand and apply concepts of non- inertial frames of reference						0	-AQAC	-03.02.	1
7. Understand the concept of central force a Derive Kepler's laws.									

مـركــز الاعتـماد وضمان الجودة

21. Topic Outline and Schedule:

Week	Lecture	Topic	Intended Learning Outcome	Learning Methods (Face to Face/Blended/ Fully Online)	Platform	Synchronous/ Asynchronous Lecturing	Evaluation Methods	Resourc
1	1.1	Introduction Units and Dimensions						
	1.2	Vectors						
	1.3	The Scalar Product						
2	2.1	The Vector Product						
	2.2	An Example of the Cross Product: Moment of a Force. Triple Products						
	2.3	Change of Coordinate System: The Transformation Matrix						
Week	Lecture	Topic	Intended Learning Outcome	Learning Methods(Face to Face/Blended/ Fully Online)	Platform	Synchronous/ Asynchronous Lecturing	Evaluation Methods	Resourc
3	3.1	Derivative of a Vector						
	3.2	Position Vector of a Particle: Velocity and Acceleration in Rectangular Coordinates						
	3.3	Velocity and Acceleration in Plane Polar Coordinates						
4	4.1	Velocity and Acceleration in Cylindrical Coordinates						
	4.2	Problems Ch1						

مـركــــــالاعتماد وضمان الجودة

مـركــز الاعتـماد
وضمان الجودة

22 Evaluation Methods:

Opportunities to demonstrate achievement of the SLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	SLOs	Period (Week)	Platform

23 Course Requirements

White board and overhead projector.

24 Course Policies:

A- Attendance policies:
Regular attendance according to the rules of the host institution
B- Absences from exams and handing in assignments on time:
Based on the rules of the host institution.
C- Health and safety procedures:
Based on the rules of the host institution
D- Honesty policy regarding cheating, plagiarism, misbehavior:
According the rules of the host institution
E- Grading policy:
Grading the exam based on a key solution.
F- Available university services that support achievement in the course:
e-learning.

25 References:

A- Required book (s), assigned reading and audio-visuals:

Analytical Mechanics" by Grant R. Fowles and George L. Cassiday, $7^{\text {th }}$ Edition, 2005, Thomson/Brookscole

B- Recommended books, materials, and media:

Marion, J. B., and Thornton, S. T., Classical Dynamics, 5th ed., Brooks/Cole-Thomson Learning, Belmont, CA, 2004.

26 Additional information:

مـركــــــالاعتماد
وضمانٌ الجودة
A set of problems for each topic will be assigned as homework. Solutions of these and other Problems will be discussed in class.

