

The University of Jordan

Accreditation & Quality Assurance Center

Course Syllabus

<u>Course Name:</u> <u>Nuclear Physics 1</u>

1	Course title	Nuclear Physics 1
2	Course number	0332763
3	Credit hours (theory, practical)	(3,0)
	Contact hours (theory, practical)	(3,0)
4	Prerequisites/co-requisites	None
5	Program title	Physics
6	Program code	
7	Awarding institution	The University of Jordan
8	Faculty	Science
9	Department	Physics
10	Level of course	Master Degree
11	Year of study and semester (s)	Second semester 2016/2017
12	Final Qualification	
13	Other department (s) involved in teaching the course	
14	Language of Instruction	English
15	Date of production/revision	May 2017

16. Course Coordinator:

Office numbers, office hours, phone numbers, and email addresses should be listed. Prof. Nidal M. Ershaidat Office : Department of Physics – 011 Office Hours: Sun. 11:30-1:00, Mon. and Wed. 15:30-17:00 Phone: 00962-6-535000 E-mail: <u>N.Ershaidat@ju.edu.jo</u>

17. Other instructors:

18. Course Description:

As stated in the approved study plan.

Hadrons: Nucleons, Pions, Isospin, Strangeness and Hypercharge. Properties of Nuclear Forces; Two-Nucleon System: Electrostatic Multipoles, Properties of the Deuteron, Partial Wave Expansion, Low Energy Scattering, Effective Range Expansion. General Properties of Nuclei. Nuclear Models: Shell Model; Magnetic Dipole and Electric Quadrupole Moments, Fermi-Gas Model. Radioactivity: Decay Chains, Secular Equilibrium, Theory of Alpha Emission.

19. Course aims and outcomes:

A- Aims:

- 1. Introduce students to the elementary particles and the Standard Model.
- 2. Introduce the students to the properties of the nuclear force.
- 3. Enable students to interpret nuclear structure in terms of the underlying nuclear force.
- 4. Introduce students to experimental scattering results having led to nuclear models.
- 5. Introduce students to three nuclear models: Shell Model, Vibrational and Rotational Models.
- 6. Introduce students to stable and unstable nuclei, radioactivity and alpha decay.

B- Intended Learning Outcomes (ILOs): Upon successful completion of this course students will be able to ...

- 1) Manage and understand modern physics concepts.
- 2) Recognize and know the basic properties of the elementary particles and the hadrons composed of quarks.
- 3) Study the basic properties of the nuclear force by studying the simplest nuclear system: deuteron.
- 4) Understand and derive the different multipole moments and deal with their corresponding operators.
- 5) Use of the Fermi (independent particles) Gas Model and estimate the value of the Fermi energy and the dimensions (width and depth) of the nuclear potential.
- 6) Determine the spin and parity of different nuclei in their ground state.
- 7) Understand the characteristics and energy levels of excited nuclei.
- 8) Determine the number of a given species of an unstable nucleus in a radioactive decay chain.
- 9) Understand decay schemes and branching ratios.
- 10) Study the kinematics of nuclear reactions in general and that of alpha emission.
- 11) Study the systematics of alpha decay and the quantum theory of alpha decay (The Gamow's theory). This theory is a remarkable application of basic concepts in quantum mechanics.

Topic	Week	Instructor	Achieved ILOs	Evaluation Methods	Reference
Hadrons	1-3	Prof. Nidal Ershaidat	1,2	Continuous assessment through: Home works, Discussions.	Textbook and references
General Properties of Nuclei	4-7	Prof. Nidal Ershaidat	1,3,4	Exams	-
Nuclear Models	8-10	Prof. Nidal Ershaidat	1,6,7		
Radioactivity	11-12	Prof. Nidal Ershaidat	1,8,9		
Alpha Decay	13-end of semester	Prof. Nidal Ershaidat	1,10		

20. Topic Outline and Schedule:

21. Teaching Methods and Assignments:

Development of ILOs is promoted through the following <u>teaching and learning methods</u>:

- 1) Lectures.
- 2) Use of (animated) PowerPoint presentations
- 3) Discussion.

22. Evaluation Methods and Course Requirements:

Opportunities to demonstrate achievement of the ILOs are provided through the following <u>assessment methods</u> <u>and requirements</u>:

- A set of 6 assignments (weight 30% of the total grade) covering the major concepts of the course.
- A mid-term exam: 30% of the total grade
- A final exam: 40% of the total grade
- Examinations and follow on discussions of their answers.

23. Course Policies:

A- Attendance policies: According to the University policies.

- B- Absences from exams and handing in assignments on time: According to the University policies.
- C- Health and safety procedures: According to the University policies.
- D- Honesty policy regarding cheating, plagiarism, misbehavior: According to the University policies.
- E- Grading policy: Midterm Exam 30%, Continuous Assessment 30%, Final Exam 40%.
- F- Available university services that support achievement in the course:

24. Required equipment:

White board

Data Show

Laptop

25. References:

- A- Nuclear Physics in a Nutshell, C. A. Bertulani, Princeton University Press, 2007
- B- Recommended books, materials, and media:
- Introductory Nuclear Physics, K.S. Krane, John Wiley and Sons, 1988. (Excellent for revising the Undergraduate material).
- Nuclear Structure from a simple Perspective, R. F. Casten, 2nd edition, Oxford Science, 2000.
- Introductory Nuclear Physics, P. Hodgson, E. Gadioli and E. Gadioli-Erba, Clarendon Press, Oxford, 1997.

Use of major databases in Nuclear Physics

1- An extensive use of *Tables of Nuclear Data* of the Nuclear Data Center (NDC) of the Japan Atomic Energy Agency (JAEA).

26. Additional information: