

Course Syllabus

1	Course title	Classical Electrodynamics I			
2	Course number	0362753			
3	Credit hours	3			
5	Contact hours (theory, practical)	3 hours weekly			
4	Prerequisites/corequisites	None			
5	Program title	Master's in physics			
6	Program code	0362			
7	Awarding institution	The University of Jordan			
8	School	Science			
9	Department	Physics			
10	Course level	1 st year			
11	Year of study and semester(s)	1 st sem, 2022/2023			
١٢	Other department(s) involved in teaching the course				
١٣	Main teaching language	English			
١٤	Delivery method	⊠Face to face learning □Blended □Fully online			
10	Online platforms(s)	⊠Moodle ⊠Microsoft Teams □Skype □Zoom □Others			
١٦	Issuing/Revision Date	3/11/2022			

مركـز الاعتماد وضمان الجودة	VV Course Coordinator:
ACCREDITATION & QUALITY ASSURANCE CENTER	

Name: Khaled Bodoor

Office number: 22333

Email: kbodoor@ju.edu.jo

Contact hours: M & Wd : 14:00 – 15:30

Phone number:

\^ Other instructors:

Name:
Office number:
Phone number:
Email:
Contact hours:
Name:
Office number:
Phone number:
Email:
Contact hours:

\9 Course Description:

As stated in the approved study plan.

This is an advanced physics course aiming at expanding student's knowledge in the subjects of electricity and magnetism. This course offers the classical point of view of this subject.

Y · Course aims and outcomes:

4

وضمان الجودة A- Aims:

مركز الاعتماد

To give the students the proper mathematical and physics background in electricity and magnetism.

B- Students Learning Outcomes (SLOs):

For purposes of mapping the course SLOs to the physics program SLOs, at the successful completion of the physics program, graduates are expected to be able to:

SLO (1) Master professionally a broad set of knowledge concerning the fundamentals in the basic areas of physics: Quantum Mechanics, Classical Mechanics, Electrostatics and Magnetism, Thermal Physics, Optics, Theory of Special Relativity, Mathematical Physics, Electronics.

SLO (2) Apply knowledge of mathematics and fundamental concepts in the basic areas of physics to identify and solve physics related problems.

SLO (3) Utilize computers and available software in both data collections and data analysis.

SLO (4) Utilize standard laboratory equipment, modern instrumentation, and classical techniques to design and conduct experiments as well as to analyze and interpret data.

SLO (5) Develop a recognition of the need and ability to engage in life-long learning.

SLO (6) Demonstrate ability to use techniques, skills, and modern scientific tools necessary for professional practice.

SLO (7) Communicate clearly and effectively in both written and oral forms.

SLO (8) Apply proficiently team-work skills and employ team-based learning strategies.

SLO (9) Apply professional and ethical responsibility to society.

Upon successful completion of this course, students will be able to:

Program SLOs	SLO	SLO	SLO	SLO	SLO	SLO	SLO	SLO	SLO
Course SLOs	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
1. Understand and explain the physics laws governing the behavior of electromagnetic quantities.	~	\checkmark			~	~	~	~	~
2. Explain Green's theorem; Use Green's functions to solve Poisson's equation, including problems involving boundary conditions on surfaces.	~	✓	✓		~	✓	~	~	
3. Understand matter interactions with electric fields, including macroscopic media and dielectrics.	~	~	~		~	~	~	~	

4.	Understand matter interactions with electric fields	~	✓	~	✓	~	~	~	
5.	Understand currents and magnetic fields and solve problems requiring the calculation of magnetic fields.	~	✓	~	~	~	~	~	
6.	Understand matter interactions with magnetic fields.	~	~	~	~	~	~	~	
7.	Magnetic field interactions and inductance	~	~	~	~	~	~	~	
8.	Perform multipole expansions of electrostatic fields.	~	\checkmark	~	✓	~	~	~	
9.	Explain the physical meaning of Maxwell's equations.	✓	\checkmark		✓	~	~	~	

***).** Topic Outline and Schedule:

Торіс	Week	Instructor	Achieved ILOs	Evaluation Methods	Reference
Introduction to Electrostatics	1 -2	Dr. Khaled Bodoor	1,2	In class discussion + short quiz/homework	Text book, Internet, Refs
Boundary Value Problems in Electrostatics: I	3-4	Dr. Khaled Bodoor	1,2	In class discussion + short quiz/homework+ 1 st exam	Text book, Internet, Refs
Boundary Value Problems in Electrostatics: II	5-8	Dr. Khaled Bodoor	1,2	In class discussion + short quiz/homework	Text book, Internet, Refs
Multipoles, Electrostatics of Macroscopic Media, Dielectrics	9-11	Dr. Khaled Bodoor	3,4,8	In class discussion + short quiz/homework+ 2 nd exam	Text book, Internet, Refs
Magnetostatics, Faraday's Law, Quasi-static Fields	12- 15	Dr. Khaled Bodoor	5,6,7,8	In class discussion + short quiz/homework	Text book, Internet, Refs
Maxwell's Equations, Macroscopic	16	Dr. Khaled Bodoor	9	In class discussion + short quiz/homework	Text book, Internet, Refs

DOMINION GUILTY ASSUMPCE CAMPA						
Electromagnetism, Conservation Laws						
		•				

YY Evaluation Methods:

Opportunities to demonstrate achievement of the SLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	SLOs	Period (Week)	Platform
Quizzes &		All topics	1,2,3,4,5,		
Assignments	20		6,7,8,9	Every week	On campus
		Introduction to	1,2		
1 st Exam		Electrostatics,			
		Boundary Value			
	20	Problems: I		7 th week	On campus
		Boundary Value	3,4		
		Problems: I,			
2 nd Exam		Multipoles,			
2 Exam		Electrostatics of			
		Macroscopic Media,			
	20	Dielectrics		11 th week	On campus
Final Exam			1,2,3,4,5,		
i mai Exam	40	COMPREHENSIVE	6,7,8,9	16 th week	On campus

T Course Requirements

Students are directed and encouraged to use all possible resources: a) use the internet as a learning source.

b) a series of short movies is promoted

6

c) students are encouraged to learn a suitable software package as a learning tool.

Y[£] Course Policies:

A- Attendance policies:

No more than 15% of classes can be missed under any circumstances. The students are supposed to be on time for each session and will not be admitted after 10 minutes from the starting time.

B- Absences from exams and submitting assignments on time:

Assignments are only taken if submitted on time and no make ups for short quizzes.

C- Health and safety procedures:

The lectures are located in proper locations for best lecturing conditions.

D- Honesty policy regarding cheating, plagiarism, misbehavior:

Any act of cheating or plagiarism is not tolerated and the students are clearly required to submit their own work.

E- Grading policy:

The grading for this course is divided into: 20% quizzes & assignments, 20% first exam, 20% second exam, and 40% final exam.

F- Available university services that support achievement in the course:

Library & computer lab.

*** • References:**

A- Required book(s), assigned reading and audio-visuals:

• Classical Electrodynamics, J. D. Jackson

B- Recommended books, materials, and media:

- Electricity and Magnetism, Edward Purcell
- Youtube, Internet sources,

8

****** Additional information:

Name of Course Coordinator: Khaled Bodoor	Signature: Khaled G. Modoor
Date: 3/11/2022	
Head of Curriculum Committee/Department:	Signature:
Head of Department:	Signature:
-	
Head of Curriculum Committee/Faculty:	Signature:
- Dean: S	ignature: