

Course Syllabus

1	Course title Principles of Geochemistry					
2	Course number	0345351				
3	Credit hours	3				
	Contact hours (theory, practical)	3				
4	Prerequisites/corequisites	305231 Petrology				
5	Program title	Environmental and applied Geology				
6	Program code					
7	Awarding institution	The University of Jordan				
8	School	School of science				
9	Department	Geology				
10	Course level					
11	Year of study and semester (s)	2023/2024 Fall				
12	Other department (s) involved in teaching the course	Non				
13	Main teaching language	English				
14	Delivery method	□XFace to face learning □Blended □Fully online				
15	Online platforms(s)	□XMoodle □Microsoft Teams □Skype □Zoom				
10		□Others				
16	Issuing/Revision Date	27/2/2024				
17 Course Coordinator:						
Nam	e: Dr Najel Yaseen	Contact hours:				
Offic	ce number: 202	Phone number: 22275				
Ema	Email: nyaseen@ju.edu.jo					

18 Other instructors: Non

ime:	
fice number:	
one number:	
nail:	
ontact hours:	
ime:	
fice number:	
one number:	
nail:	
ontact hours:	

19 Course Description:

As stated in the approved study plan.

Overview of the formation of the solar system and the synthesis of chemical elements; chemical equilibrium; acids and bases; distribution and geochemical classification of elements; salts and aqueous geochemistry; chemical weathering and mineral equilibria; introduction to thermodynamics; oxidation-reduction reactions; isotope geochemistry: radioactive, radiogenic, and stable isotopes and their applications.

20 Course aims and outcomes:

Aims:

- 1- Help the students to apply mathematical and chemical principles on earth materials (i.e rocks, minerals, water, gases etc)
- 2- Help the students to understand the origin of the different spheres of the earth and their interaction
- 3- Help the students to understand the causes of the observed chemical composition of the terrestrial materials

- 4- Help students to use their understanding of thermodynamics and kinetics to predict mineral and fluid-rock reactions for a geochemical system and given environmental conditions
- 5- Introduce students to the basics of age determination

B- Students Learning Outcomes (SLOs):

Upon successful completion of this course, students will be able to:

	SLO	SLO	SLO	SLO	SLO	SLO	SLO	SLO	SLC
SLOs	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
SLOs of the course									
1 define terms and concepts	X	X					X		
related to geochemistry	2	Λ					Λ		
2 describe and explain the	X	X					X		
origin of the universe, solar		1							
system and the synthesis and									
abundances of chemical									
elements									
3 explain the chemical	\mathbf{X}	\mathbf{X}					X		
differentiation of the Earth									
4- relate electronic structure of	\mathbf{X}	X					X		
atoms to their physical and									
chemical properties			1						
5 predict ionic substitution in	\mathbf{X}	X					\mathbf{X}		
crystals (minerals)									
6 use basics of aqueous	\mathbf{X}	X					X		
geochemistry and mineral stability diagrams									
7 use their understanding of	T 7								
thermodynamics and kinetics	\mathbf{X}	X					X		
to predict mineral and fluid-									
rock reactions for a									
geochemical system and given									
environmental conditions									
8 explain Clay minerals as	V		1						
products of chemical	\mathbf{X}	X					X		
weathering (self reading)									
9 construct Eh-ph diagrams	X	■ W					3 7		
· -		X	ļ				X		
10 use basic knowledge of	\mathbf{X}	X					X		
stable and radiogenic isotopes									
and their application to									
geosciences									

21. Topic Outline and Schedule:

	Lecture	Торіс	Student Learning Outcome	Learning Methods (Face to Face/Blended/ Fully Online)	Platform	Synchronous / Asynchronous Lecturing	Evaluation Methods	Resources
1		Big Bang Nucleosynt hesis	2	Face to face			Problem set	Faure, G. 1998
2		Solar system Chemical differentiati on of the earth (1)	3	Face to face			Problem set	Faure, G. 1998
3		Chemical differentiati on of the earth (2) Electronic strcture Periodic table and atomic weights	1	Face to face			Problem set	Faure, G. 1998
4		Chemical Bonds,ioni c radii, and crystals Ionic substitution Acids and bases	5	Face to face				Faure, G. 1998

ACCREDITATION & GUALITY ASSU	NAVICE CENTER	mass action	1			set	Faure,
5		pH Control of Dissociatio n equlibiria (2)	5				G. 1998
6		Salts solubility Salts replacemen t	6			Problem set	Faure, G. 1998
7		Activities and concentrati ons Thermodyn amics Internal energy & enthalpy	7			Problem set	Faure, G. 1998
8		Entropy & Gibbs free energy Gibbs free energy and law of mass action Van't hoff equation	7	Face to face			Faure, G. 1998
9		Minerl stability diagram Oxidation and reduction deffinitions	9	Face to face			Faure, G. 1998

10	4.0004	Electromot iv force Nernest equation Stability of water	9	Face to face				Faure, G. 1998
11		Eh ph diagram iron oxide Eh ph diagram Fe ²⁺ , Fe ³⁺ geochrono logy	9	Face to face				Faure, G. 1998
Week	Lecture	Topic	Student Learning Outcome	Learning Methods (Face to Face/Blended/ Fully Online)	Platform	Synchronous / Asynchronous Lecturing	Evaluation Methods	Resources
12		Decay methods Rb- Sr method crystallizati no Rb- Sr method metamorph ism	1 10	Face to face				Faure, G. 1998
13		U- pb method Stable isotope Oxygen and hydrogen isotoes	1 10	Face to face				Faure, G. 1998

عركز الاعتماد 22 Evaluation Methods:

Opportunities to demonstrate achievement of the SLOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	SLOs	Period (Week)	Platform
1 st exam	15	1-5	1-5	4	
2 nd exam	15	6-7	6-7	8	
Proplem sets	10	1-10	1-10	Each 2 weeks	
Self-reading exam	10	weathering		12	
Final exam	50	5-13	5-13		

23 Course Requirements

24 Course Policies:

- A- Attendance policies: university regulation
- B- Absences from exams and submitting assignments on time: university regulation
- C- Health and safety procedures:
- D- Honesty policy regarding cheating, plagiarism, misbehavior: university regulation
- E- Grading policy: May subjected to changes (depends on the overall results)
- 0-39 F
- 40 44 D-
- 45 49 D
- 50 54 D+
- 55 59 C-
- 60 64 C
- 65 69 C+
- 70 74 B-
- 75 79 B

Dean:	Signature:
-	