

| 1  | Course title                                        | General Physics II                               |  |  |
|----|-----------------------------------------------------|--------------------------------------------------|--|--|
| 2  | Course number                                       | 0302102                                          |  |  |
| 3  | Credit hours                                        | 3                                                |  |  |
| 5  | Contact hours (theory, practical)                   | 3 Theory                                         |  |  |
| 4  | Prerequisites/corequisites                          | General Physics I (0302101)                      |  |  |
| 5  | Program title                                       | Physics                                          |  |  |
| 6  | Program code                                        |                                                  |  |  |
| 7  | Awarding institution                                | The University of Jordan                         |  |  |
| 8  | School                                              | Science                                          |  |  |
| 9  | Department                                          | Physics                                          |  |  |
| 10 | Course level                                        | 1 <sup>st</sup> year                             |  |  |
| 11 | Year of study and semester(s)                       | 1 <sup>st</sup> semester 2022/2023               |  |  |
| 12 | Other department(s) involved in teaching the course |                                                  |  |  |
| 13 | Main teaching language                              | English (Arabic limited)                         |  |  |
| 14 | Delivery method                                     | ⊠Face to face learning ⊠Blended □Fully online    |  |  |
| 15 | <b>Online</b> platforms(s)                          | ⊠Moodle ⊠Microsoft Teams □Skype □Zoom<br>□Others |  |  |
| 16 | Issuing/Revision Date                               | November 2022                                    |  |  |



2

### 17 Course Coordinator:

Name: Faculty members at the Department of PhysicsContact hours: member dependentOffice number: specified member roomPhone number: faculty membersEmail: faculty membersPhone number: faculty members

#### 18 Other instructors:

| Name:          | Faculty members at the Department of Physics |  |
|----------------|----------------------------------------------|--|
| Office number: | Faculty members' offices                     |  |
| Phone number:  | Faculty members' phone numbers               |  |
| Email:         | Faculty members' e-mails                     |  |
| Contact hours: | Faculty members scheduled                    |  |

## **19 Course Description:**

Basic Principles of Electricity and Magnetism. Electric Field, Gauss's Law; Electric Potential; Capacitance and Dielectrics; Current and Resistance; Direct Current Circuits, Magnetic Field, Sources of the Magnetic Field, Faraday's Laws of Induction.

#### 20 Course aims and outcomes:

A- Aims:

مركـز الاعـتماد وضمان الجودة

1- Understanding the fundamental concepts in electricity and magnetism.

2- Utilizing physics concepts qualitatively as well as quantitatively.

3- To develop critical thinking and analytical problem-solving skills.

4- To gain an appreciation of how large a role electromagnetism plays in our daily life.

B- Students Learning Outcomes (SLOs):

Upon successful completion of this course, students will be able to:

|                                                          | SLO (1)                                                                 | SLO (2)                                                                                            | SIO(3)                                                                                                  | SIO(4)                                                                                                             |
|----------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| SLOs<br>SLOs of the                                      | SLU (1)                                                                 | SLU (2)                                                                                            | SLO (3)                                                                                                 | SLO (4)                                                                                                            |
| course                                                   | <b>T</b> T 1 1                                                          |                                                                                                    |                                                                                                         |                                                                                                                    |
| 1: Electric<br>Charge and<br>Electric Field              | Use and apply<br>Coulomb's law                                          | Describe the<br>electric field<br>properties                                                       | Calculate the<br>electric field of<br>point charges                                                     | Calculate the<br>electric field of<br>charge<br>distributions                                                      |
| 2: Gauss's Law                                           | Calculate the<br>electric flux                                          | Utilize Gauss'<br>law to calculate<br>the electric field<br>of symmetric<br>charge<br>distribution | Understand the<br>difference<br>conductors and<br>dielectrics with<br>respect to charge<br>distribution |                                                                                                                    |
| 3: Electric<br>Potential                                 | Calculate the<br>electric potential<br>nearby point<br>charges          | Calculate the<br>electric potential<br>of a charge<br>distribution                                 | Calculate the<br>electric potential<br>energy of a<br>charge<br>distribution                            | Understand the<br>concept of<br>equipotential<br>surfaces and<br>calculate the<br>electric potential<br>difference |
| 4: Capacitance<br>and Dielectrics                        | Calculate the<br>capacitance of a<br>physical object                    | Understand and<br>utilize the use of<br>capacitors in<br>electric circuits                         | Calculate the<br>equivalent<br>capacitance of<br>parallel/series<br>connections                         | Understand the<br>effect of<br>dielectric<br>materials used in<br>capacitors                                       |
| 5: Current,<br>Resistance, and<br>Electromotive<br>Force | Understand the<br>concept of the<br>electric current<br>and resistivity | Understand the<br>concept of the<br>electromotive<br>force (emf)                                   | Calculate the<br>electric potential<br>difference across<br>a resistor QF-<br>connected to an<br>emf    | Calculate the<br>dissipated across<br>a resistor<br>Acconceoscol.ton an<br>emf                                     |
| 6: Direct-Current                                        | Understand and                                                          | Calculate the                                                                                      | Utilize                                                                                                 | Understand the                                                                                                     |
| Circuits                                                 | utilize the use of                                                      | equivalent                                                                                         | Kirchhoff's rule                                                                                        | principle of R-C                                                                                                   |



# 21. Topic Outline and Schedule:

| Chapter | Content                                                                                                                                                                                                                                                                                                      | Suggested                     |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|
|         |                                                                                                                                                                                                                                                                                                              | Exercises & Problems          |  |
| 21      | Electric Charge and Electric Field<br>21.3 Coulomb's Law<br>21.4 Electric Field and Electric Forces<br>21.5 Electric-Field Calculations<br>21.6 Electric Field Lines<br>21.7 Electric Dipoles                                                                                                                | 9, 13, 16, 23, 29, 48, 51, 65 |  |
| 22      | Gauss's Law<br>22.1 Charge and Electric Flux<br>22.2 Calculating Electric Flux<br>22.3 Gauss's Law<br>22.4 Applications of Gauss's Law<br>22.5 Charges on Conductors                                                                                                                                         | 2, 5, 8, 11, 17, 21, 43       |  |
| 23      | Electric Potential<br>23.1 Electric Potential Energy<br>23.2 Electric Potential<br>23.3 Calculating Electric Potential<br>23.4 Equipotential Surfaces<br>23.5 Potential Gradient                                                                                                                             | 7, 8, 26, 37, 44, 68          |  |
| 24      | Capacitance and Dielectrics<br>24.1 Capacitors and Capacitance<br>24.2 Capacitors in Series and Parallel<br>24.3 Energy Storage in Capacitors and Electric-Field<br>Energy<br>24.4 Dielectrics                                                                                                               | 1, 17, 20, 33                 |  |
| 25      | Current, Resistance, and Electromotive Force<br>25.1 Current<br>25.2 Resistivity<br>25.3 Resistance<br>25.4 Electromotive Force and Circuits<br>25.5 Energy and Power in Electric Circuits                                                                                                                   | 2, 7, 20, 38                  |  |
| 26      | <b>Direct-Current Circuits</b><br>26.1 Resistors in Series and Parallel<br>26.2 Kirchhoff's Rules<br>26.4 <i>R-C</i> Circuits                                                                                                                                                                                | 4, 18, 23, 28, 39, 49, 68     |  |
| 27      | Magnetic Field and Magnetic Forces27.1 Magnetism27.2 Magnetic Field27.3 Magnetic Field Lines and Magnetic Flux27.4 Motion of Charged Particles in a Magnetic Field27.5 Applications of Motion of Charged Particles27.6 Magnetic Force on a Current-Carrying Conductor27.7 Force and Torque on a Current Loop | 4, 5, 11, 27, 36, 45          |  |
| 28      | Sources of Magnetic Field                                                                                                                                                                                                                                                                                    | 14, 23, 43, 46, 64            |  |

QF-AQAC-03.02.01



|    | 28.1 Magnetic Field of a Moving Charge                 |               |  |
|----|--------------------------------------------------------|---------------|--|
|    | 28.2 Magnetic Field of a Current Element               |               |  |
|    | 28.3 Magnetic Field of a Straight Current-Carrying     |               |  |
|    | Conductor                                              |               |  |
|    | 28.4 Force Between Parallel Conductors                 |               |  |
|    | 28.5 Magnetic Field of a Circular Current Loop         |               |  |
|    | 28.6 Ampere's Law                                      |               |  |
|    | 28.7 Applications of Ampere's Law                      |               |  |
|    | Faraday's Law                                          |               |  |
|    | 29.1 Induction Experiments                             |               |  |
| 29 | 29.2 Faraday's Law                                     | 1, 7, 27, 30  |  |
|    | 29.3 Lenz's Law                                        |               |  |
|    | 29.4 Motional Electromotive Force                      |               |  |
|    | Inductance                                             |               |  |
| 30 | 30.2 Self-Inductance and Inductors                     | 7, 10, 17, 25 |  |
| 50 | 30.3 Magnetic-Field Energy                             | 7, 10, 17, 25 |  |
|    | 30.4 The <i>R-L</i> Circuit                            |               |  |
|    | Alternating Current                                    |               |  |
|    | 31.1 Phasors and Alternating Currents                  |               |  |
| 31 | 31.2 Resistance and Reactance                          | 5, 14, 18     |  |
|    | 31.3 The <i>L</i> - <i>R</i> - <i>C</i> Series Circuit |               |  |
|    | 31.4 Power in Alternating-Current Circuits             |               |  |
|    | The Nature and Propagation of Light                    |               |  |
| 33 | 33.1 The Nature of Light                               | 4, 11, 17     |  |
| 55 | 33.2 Reflection and Refraction                         | 7, 11, 17     |  |
|    | 33.3 Total Internal Reflection                         |               |  |
|    | Geometric Optics                                       |               |  |
| 34 | 34.1 Reflection and Refraction at a Plane Surface      | 2, 28, 57     |  |
| 54 | 34.4 Thin Lenses                                       |               |  |
|    | 34.7 The Magnifier                                     |               |  |

## 22 Evaluation Methods:

Opportunities to demonstrate achievement of the SLOs are provided through the following assessment methods and requirements:

| Evaluation Activity | Mark | Topic(s) | SLOs | Period (Week) | Platform     |
|---------------------|------|----------|------|---------------|--------------|
| Midterm Exam        | 30   |          |      |               | Students.com |
| Exam                | 20   |          |      |               | Students.com |
| Final Exam          | 50   |          |      |               | Students.com |

### **23** Course Requirements



Students have access to the internet and user account on Moodle and Microsoft Teams

### 24 Course Policies:

A- Attendance policies:

Class attendance is mandatory. A student whose absence exceeds 15% of lectures will be dismissed.

B- Absences from exams and submitting assignments on time:

Absence from exams without an acceptable excuse means ZERO. No grades for homework assignments. Some suggested problems will be discussed in class for every chapter.

C-Health and safety procedures:

No special precautions.

D- Honesty policy regarding cheating, plagiarism, misbehavior:

We all follow an honor system during the whole course. The universities laws applies to students and instructors.

E- Grading policy:

The course grading follows the guidelines of the undergraduate school: 30% midterm exam + 20% Exam + 50% Final Exam.

F- Available university services that support achievement in the course:

Class Room, Equipped Laboratory, Library, IT infrastructure

## 25 References:

A- Required book(s), assigned reading and audio-visuals:

"University Physics with Modern Physics", F. Sears & M. Zemansky's, 14th edition, (Pearson, Pearson

مـركـز الاعـتماد وضمان الجودة

Education Limited, 2016).

B-Recommended books, materials, and media:

1. Raymond A. Serway and John W. Jewett Jr., "Physics For Scientists and Engineers with Modern Physics", 9th edition, (Thomson Learning, Belmont, CA, USA, 2014).

2. David Halliday, Robert Resnick, and Jearl Walker, "EXTENDED PRINCPLES OF PHYSICS", 9th Edition (John Wiley & Sons, Inc., 2011).

3. Bauer Westfall, "University Physics with Modern Physics", (McGraw Hill, 2011).

4. James S. Walker, "Physics" Fourth Edition, (Addison - Wesley, 2010).

5. Giancoli, "Physics for Scientists & Engineers with Modern Physics", Fourth Edition, (Pearson Education, 2009).

6. Ohanian and Market, "Physics for Engineers and Scientists", Extended Third Edition, (W. W. Norton & Company, 2007).

#### 26 Additional information:

| Name of Course Coordinator: Dr. Bashar Lahlouh Signature: Date: Date: |
|-----------------------------------------------------------------------|
|                                                                       |
| Head of Curriculum Committee/Department: Signature: Signature:        |
| ····                                                                  |
| Head of Department: Signature:                                        |
|                                                                       |
| Head of Curriculum Committee/Faculty: Signature:                      |
|                                                                       |
| Dean: Signature:                                                      |
|                                                                       |