Course Syllabus | 1 | Course title | Classical Mechanics 1 | |----|---|---| | 2 | Course number | 0302351 | | 3 | Credit hours | (3, 0) | | | Contact hours (theory, practical) | (48, 0) | | 4 | Prerequisites/corequisites | 0302281 | | 5 | Program title | Physics | | 6 | Program code | 0302 | | 7 | Awarding institution | University of Jordan | | 8 | School | Science | | 9 | Department | Physics | | 10 | Course level | Third Year | | 11 | Year of study and semester(s) | Third , First Semester | | 12 | Other department(s) involved in teaching the course | Non | | 13 | Main teaching language | English | | 14 | Delivery method | | | 15 | Online platforms(s) | Moodle ☐ Microsoft Teams ☐ Skype☐ Zoom ☐ Others | | 16 | Issuing/Revision Date | 10/10/2022 | | осивалион опили извиния сония | | |--|---| | Name: Ahmad S Masadeh | Contact hours: Sunday Monday 11 -12 | | Office number: 12 | Phone number: 22065 | | Email: ahmad.masadeh@ju.edu.jo | | | | | | | | | 18 Other instructors: | | | None | | | | | | | | | | | | | | | | | | 19 Course Description: | | | | armonic oscillator, damped oscillations, forced | | oscillations; gravitation; central force motion; | rotating frames. | | | | # 20 Course aims and outcomes: #### A- Aims: B- Students Learning Outcomes (SLOs): For purposes of mapping the course SLOs to the physics program SLOs, at the successful completion of the physics program, graduates are expected to be able to: - **SLO** (1) Master professionally a broad set of knowledge concerning the fundamentals in the basic areas of physics: Classical Mechanics, Electrostatics and Magnetism, Quantum Mechanics, Thermal Physics, Optics, Theory of Special Relativity, Mathematical Physics, Electronics. - **SLO** (2) Apply knowledge of mathematics and fundamental concepts in the basic areas of physics to identify and solve physics related problems. - SLO (3) Utilize computers and available software in both data collections and data analysis. - **SLO (4)** Utilize standard laboratory equipment, modern instrumentation, and classical techniques to design and conduct experiments as well as to analyze and interpret data. - **SLO** (5) Develop a recognition of the need and ability to engage in life-long learning. - **SLO** (6) Demonstrate ability to use techniques, skills, and modern scientific tools necessary for professional practice. - **SLO** (7) Communicate clearly and effectively in both written and oral forms. - SLO (8) Apply proficiently team-work skills and employ team-based learning strategies. - SLO (9) Apply professional and ethical responsibility to society. Upon successful completion of this course, students will be able to: | _ | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | |----|--|-------------|----------|----------|-----|-----|-----|------|---------|-----| | | Program SLOs | SLO (1) | SLO | | Course SLOs | | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | | 1. | Demonstrate proficiency in mathematical concepts needed for a proper understanding of classical mechanics. | > | | √ | | | | ✓ | | | | 2. | Analyze elementary motion problems involving constant acceleration motion | ✓ | ✓ | | | ✓ | | | | | | 3. | Understand and apply Newton's laws
of motion, and Newton's law of
universal gravitation, in common
problems | | | | | | | | | | | 4. | Apply conservation of total mechanical energy and linear momentums principles in common problems | | | | | | | | | | | 5. | Solve problems dealing with force depends on position and force depends on velocity. | | | | | | | | | | | 6. | understand and apply concepts of
non- inertial frames of reference | | | | | | Qi | AQAC | -03.02. | 01 | | 7. | Understand the concept of central force a Derive Kepler's laws. | | | | | | | | | | ## مركز الاعتماد 21. Topic Outline and Schedule: | Week | Lecture | Торіс | Intended
Learning
Outcome | Learning
Methods (Face
to Face/Blended/
Fully Online) | Platform | Synchronous/
Asynchronous
Lecturing | Evaluation
Methods | Resourc | |------|---------|---|---------------------------------|--|----------|---|-----------------------|---------| | 1 | 1.1 | Introduction
Units and
Dimensions | | | | | | | | 1 | 1.2 | Vectors | | | | | | | | | 1.3 | The Scalar
Product | | | | | | | | | 2.1 | The Vector
Product | | | | | | | | 2 | 2.2 | An Example of
the Cross Product:
Moment of a
Force.
Triple Products | | | | | | | | | 2.3 | Change of
Coordinate
System: The
Transformation
Matrix | | | | | | | | Week | Lecture | Торіс | Intended
Learning
Outcome | Learning
Methods(Face to
Face/Blended/
Fully Online) | Platform | Synchronous/
Asynchronous
Lecturing | Evaluation
Methods | Resourc | | | 3.1 | Derivative of a
Vector | | | | | | | | 3 | 3.2 | Position Vector of a Particle: Velocity and Acceleration in Rectangular Coordinates | | | | | | | | | 3.3 | Velocity and Acceleration in Plane Polar Coordinates | | | | | | | | 4 | 4.1 | Velocity and Acceleration in Cylindrical Coordinates | | | | | | | | | 4.2 | Problems Ch1 | | | | | | | | ACCREDITATION & QUALITY ASSURA | ANCE CENTER | T | | • | | | |--------------------------------|-------------|--|--|---|--|--| | | 4.3 | Newton's Law of
Motion:
Historical
Introduction | | | | | | | 5.1 | Rectilinear
Motion: Uniform
Acceleration
Under a Constant
Force | | | | | | 5 | 5.2 | Forces that Depend on Position: The Concepts of Kinetic and Potential Energy | | | | | | | 5.3 | Velocity-
Dependent
Forces: Fluid
Resistance and
Terminal Velocity | | | | | | | 6.1 | Introduction | | | | | | 6 | 6.2 | Linear Restoring
Force: Harmonic
Motion | | | | | | | 6.3 | Energy
Considerations in
Harmonic Motion | | | | | | | 7.1 | Damped
Harmonic Motion | | | | | | 7 | 7.2 | Forced
Harmonic
Motion:
Resonance | | | | | | | 7.3 | Problems Ch3 | | | | | | | 8.1 | Introduction:
General
Principles | | | | | | 8 | 8.2 | The Potential Energy Function in Three- Dimensional Motion: The Del Operator | | | | | | | 8.3 | Forces of the
Separable Type:
Projectile Motion | | | | | | ACCREDITATION & QUALITY ASSURA | WCE CENTER | | | | | | |--------------------------------|------------|--|--|--|--|---| | | 9.1 | The Harmonic
Oscillator in Two
and Three
Dimensions | | | | | | 9 | 9.2 | Motion of
Charged Particles
in Electric and
Magnetic Fields | | | | | | | 9.3 | Constrained
Motion of a
Particle | | | | | | | 10.1 | Problems Ch4 | | | | | | 10 | 10.2 | Accelerated
Coordinate
systems and
inertial Forces. | | | | | | | 10.3 | Accelerated
Coordinate
systems and
inertial Forces | | | | | | | 11.1 | Rotation
Coordinate
Systems | | | | | | 11 | 11.2 | Rotation
Coordinate
Systems | | | | - | | | 11.3 | Dynamics of a particle in a rotating coordinate system | | | | | | 12 | 12.1 | Dynamics of a particle in a rotating coordinate system | | | | | | | 12.2 | Problems Ch5 | | | | | | | 12.3 | Introduction | | | | | | 13 | 13.1 | Gravitational
Force between a
Uniform Sphere
and a Particle | | | | | | | 13.2 | Kepler's Laws of
Planetary Motion | | | | | | ACCREDITATION & QUALITY ASSURA | ACE CENTER | | | | | | |--------------------------------|------------|---|--|--|--|--| | | 13.3 | Kepler's Second
Law: Equal Areas | | | | | | | 14.1 | Kepler's First
Law: The Law of
Ellipses | | | | | | 14 | 14.2 | Kepler's Third
Law: The
Harmonic Law | | | | | | | 14.3 | Problems Ch6 | | | | | | | 15.1 | | | | | | | 15 | 15.2 | | | | | | | | 15.3 | | | | | | ## 22 Evaluation Methods: Opportunities to demonstrate achievement of the SLOs are provided through the following assessment methods and requirements: | Evaluation Activity | Mark | Topic(s) | SLOs | Period (Week) | Platform | |----------------------------|------|----------|------|---------------|----------| # 23 Course Requirements | White board and overhead projector. | | | |-------------------------------------|--|--| | | | | ## 24 Course Policies: ### A- Attendance policies: Regular attendance according to the rules of the host institution B- Absences from exams and handing in assignments on time: Based on the rules of the host institution. C- Health and safety procedures: Based on the rules of the host institution D- Honesty policy regarding cheating, plagiarism, misbehavior: According the rules of the host institution E- Grading policy: Grading the exam based on a key solution. F- Available university services that support achievement in the course: e-learning. #### 25 References: A- Required book (s), assigned reading and audio-visuals: Analytical Mechanics" by Grant R. Fowles and George L. Cassiday, 7th Edition, 2005, Thomson/Brookscole B- Recommended books, materials, and media: Marion, J. B., and Thornton, S. T., Classical Dynamics, 5th ed., Brooks/Cole-Thomson Learning, Belmont, CA, 2004. #### 26 Additional information: A set of problems for each topic will be assigned as homework. Solutions of these and other Problems will be discussed in class. | Name of Course Coordinator: -: Ahmad Masadeh Signature: Ahmad Masadeh Date: -10-10-2022 | |---| | Head of Curriculum Committee/Department: Signature: | | | | Head of Department: Signature: | | - | | Head of Curriculum Committee/Faculty: Signature: | | | | Dean: Signature: | | | | |