

# Course Syllabus

| 1  | Course title                                        | Practical Physics for Biological Sciences Students      |
|----|-----------------------------------------------------|---------------------------------------------------------|
| 2  | Course number                                       | 0332113                                                 |
| 3  | Credit hours                                        | (0, 1)/week                                             |
| 3  | Contact hours (theory, practical)                   | (0, 3)/week                                             |
| 4  | Prerequisites/corequisites                          | 0342103                                                 |
| 5  | Program title                                       | Physics                                                 |
| 6  | Program code                                        | 0302                                                    |
| 7  | Awarding institution                                | University of Jordan                                    |
| 8  | School                                              | Science                                                 |
| 9  | Department                                          | Physics                                                 |
| 10 | Course level                                        | First Year                                              |
| 11 | Year of study and semester(s)                       | First , second Semester                                 |
| 12 | Other department(s) involved in teaching the course | Non                                                     |
| 13 | Main teaching language                              | English                                                 |
| 14 | Delivery method                                     | <b>X</b> Face to face learning □ Blended □ Fully online |
| 15 | Online platforms(s)                                 | <u><b>K</b></u> <u>Moodle</u>                           |
| 16 | Issuing/Revision Date                               | 10/10/2022                                              |



## 17 Course Coordinator: مركز الاعتماد

| Contact hours: Sunday Monday 11 -12 |
|-------------------------------------|
| Phone number: 22065                 |
|                                     |
|                                     |

#### 18 Other instructors:

| None |  |  |  |
|------|--|--|--|
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |
|      |  |  |  |

# 19 Course Description:

Students perform 11 experiments of 3-hr/week duration. These experiments are: Collection and Analysis of Data, Measurements and Uncertainties, Vectors: Force Table, Kinematics of Rectilinear Motion, Force and Motion, Collision in Two Dimensions, Rotational Motion, Simple Harmonic Motion: Simple Pendulum, The Behavior of Gases with Changes in Temperature and Pressure, The Falling Sphere Viscometer, Specific Heat Capacity of Metals.

### 20 Course aims and outcomes:



#### A- Aims:

## B- Students Learning Outcomes (SLOs):

For purposes of mapping the course SLOs to the physics program SLOs, at the successful completion of the physics program, graduates are expected to be able to:

- **SLO** (1) Master professionally a broad set of knowledge concerning the fundamentals in the basic areas of physics: Classical Mechanics, Electrostatics and Magnetism, Quantum Mechanics, Thermal Physics, Optics, Theory of Special Relativity, Mathematical Physics, Electronics.
- **SLO** (2) Apply knowledge of mathematics and fundamental concepts in the basic areas of physics to identify and solve physics related problems.
- **SLO** (3) Utilize computers and available software in both data collections and data analysis.
- **SLO** (4) Utilize standard laboratory equipment, modern instrumentation, and classical techniques to design and conduct experiments as well as to analyze and interpret data.
- **SLO** (5) Develop a recognition of the need and ability to engage in life-long learning.
- **SLO** (6) Demonstrate ability to use techniques, skills, and modern scientific tools necessary for professional practice.
- **SLO** (7) Communicate clearly and effectively in both written and oral forms.
- **SLO** (8) Apply proficiently team-work skills and employ team-based learning strategies.
- **SLO** (9) Apply professional and ethical responsibility to society.

Upon successful completion of this course, students will be able to:

|             |                                        |          |          | I   | 1   | I        | 1   | I        | I       |     |
|-------------|----------------------------------------|----------|----------|-----|-----|----------|-----|----------|---------|-----|
|             | Program SLOs                           | SLO      | SLO      | SLO | SLO | SLO      | SLO | SLO      | SLO     | SLO |
| Course SLOs |                                        | (1)      | (2)      | (3) | (4) | (5)      | (6) | (7)      | (8)     | (9) |
| 1.          | understand that physics is an          |          |          |     |     |          |     |          |         |     |
|             | experimental science and that          | <b>✓</b> |          | /   |     |          |     | <b>✓</b> |         |     |
|             | observation and experimentation are    | ·        |          |     |     |          |     |          |         |     |
|             | as important as concepts and theories  |          |          |     |     |          |     |          |         |     |
| 2.          | Analyze elementary motion in one       | <b>✓</b> | <b>✓</b> |     |     | <b>✓</b> |     |          |         |     |
|             | dimension experiment                   | ·        | ,        |     |     | ,        |     |          |         |     |
| 3.          | State the basic laws of physics in     |          |          |     |     |          |     |          |         |     |
|             | classical mechanics and thermal        |          |          |     |     |          |     |          |         |     |
|             | physics, and identify how they can     |          |          |     |     |          |     |          |         |     |
|             | be applied in various contexts         |          |          |     |     |          |     |          |         |     |
| 4.          | Perform simple physical                |          |          |     |     |          |     |          |         |     |
|             | experiments, using a variety of        |          |          |     |     |          |     |          |         |     |
|             | physics apparatus, including the       |          |          |     |     |          |     |          |         |     |
|             | gathering, interpretation and analysis |          |          |     |     |          |     |          |         |     |
|             | of data.                               |          |          |     |     |          |     |          |         |     |
| 5.          | Laboratory investigations should       |          |          |     |     |          |     |          |         |     |
|             | encourage students to add some of      |          |          |     |     |          |     |          |         |     |
|             | their own ideas to experiments and     |          |          |     |     |          |     |          |         |     |
|             | their interpretation.                  |          |          |     |     |          | QI  | F-AQAC   | -03.02. | 01  |
| 6.          | Laboratory investigations should       |          |          |     |     |          |     |          |         |     |
|             | engage students in the process of      |          |          |     |     |          |     |          |         |     |
|             | formulating and asking an              |          |          |     |     |          |     |          |         |     |
|             | interacting question of nature         |          |          |     |     |          |     |          |         |     |



# 21. Topic Outline and Schedule:

| Topic                                          | Week | Instructor    | Achieve<br>d ILOs | Evaluation Methods |
|------------------------------------------------|------|---------------|-------------------|--------------------|
| Experimental Error                             | 1    | A. Masadeh    | 1-7               | Lab Report+ Quiz   |
| Collection & Analysis of<br>Data               | 2    | Ola hassouneh | 1-7               | Lab Report+ Quiz   |
| Measurements & Uncertainties                   | 3    | A. Masadeh    | 1-7               | Lab Report+ Quiz   |
| Vectors                                        | 4    | A. Masadeh    | 1-7               | Lab Report+ Quiz   |
| Specific Heat Capacity                         | 5    | A. Masadeh    | 1-7               | Lab Report+ Quiz   |
| Motion In One Dimension                        | 6    | A. Masadeh    | 1-7               | Lab Report+ Quiz   |
| Gas Laws                                       | 7    | A. Masadeh    | 1-7               | Lab Report+ Quiz   |
| Joule Heat                                     | 8    | A. Masadeh    | 1-7               | Lab Report+ Quiz   |
| Simple Pendulum                                | 9    | A. Masadeh    | 1-7               | Lab Report+ Quiz   |
| Measurement of Resistance<br>Ohm's Law         | 10   | A. Masadeh    | 1-7               | Lab Report+ Quiz   |
| Measurement of Resistance<br>Wheatstone Bridge | 11   | A. Masadeh    | 1-7               | Lab Report+ Quiz   |
| Potentiometer                                  | 12   | A. Masadeh    | 1-7               | Lab Report+ Quiz   |

## 22 Evaluation Methods:

Opportunities to demonstrate achievement of the SLOs are provided through the following assessment methods and requirements:

| <b>Evaluation Activity</b> | Mark | Topic(s) | SLOs | Period (Week) | Platform |
|----------------------------|------|----------|------|---------------|----------|
|                            |      |          |      |               |          |
|                            |      |          |      |               |          |
|                            |      |          |      |               |          |
|                            |      |          |      |               |          |



| Opportunities to demonstrate achievement of the ILOs are provided through the following assessment methods and requirements:  Quizzes(10%) |
|--------------------------------------------------------------------------------------------------------------------------------------------|
| Midterm Exam (20%)                                                                                                                         |
| Lab Reports(30%) Final exam(40%)                                                                                                           |

### 23 Course Requirements

White board and overhead projector.

#### **24 Course Policies:**

A- Attendance policies:

Regular attendance according to the rules of the host institution

B- Absences from exams and handing in assignments on time:

Based on the rules of the host institution.

C- Health and safety procedures:

Based on the rules of the host institution

D- Honesty policy regarding cheating, plagiarism, misbehavior:

According the rules of the host institution

E- Grading policy:

Grading the exam based on a key solution.

F- Available university services that support achievement in the course:

e-learning.

#### 25 References:

A- Required book (s), assigned reading and audio-visuals:

LABOROTARY EXPERIMENTS: PHYSICS LAB- 111



| ACCREDITATION | AN OWNTY ASSIGNED CONTR                         |                                                 |
|---------------|-------------------------------------------------|-------------------------------------------------|
| B-            | Recommended books, materials, and media:        |                                                 |
| 6 A           | dditional information:                          |                                                 |
|               |                                                 |                                                 |
|               |                                                 |                                                 |
|               | Name of Course Coordinator: -: Ahmad Masadeh Si | gnature: <i>Ahmad Masadeh</i> Date: -10-10-2022 |
|               | Head of Curriculum Committee/Department:        |                                                 |
|               | Head of Department:                             | Signature:                                      |
|               | Head of Curriculum Committee/Faculty:           | Signature:                                      |
|               | Dean: S                                         | ignature:                                       |
|               |                                                 |                                                 |